The toolkit is a ready-to-use digital collection of modules aimed at teenagers to be used by teachers, informal learning organisations, researchers and industry. The aim is to engage young people and especially girls in STEM and in the discovery of the variety of STEM related careers in a gender inclusive way. The toolkit includes a wide range of hands-on activities: workshops with a scientific content, informal discussions and meetings with STEM professionals.

Each module is composed of three guidelines:

- Explanatory guidelines specific for each activity
- Guidelines dedicated to the theme of gender inclusion
- Guidelines with suggestions for the facilitation

The guidelines give practical support and guidance for the users, recommendations on how to debate gender approaches and differences with young people, support and guidance for facilitators on how to overcome their own stereotypes and suggestions on how to manage the group dynamics by implementing different facilitation strategies.

The toolkit is produced in the context of the Hypatia project by five science centres and museums (NEMO Science Museum, Museo Nazionale della Scienza e della Tecnologia “Leonardo da Vinci”, Bloomfield Science Museum Jerusalem, Experimentarium, UniverScience) in collaboration with gender experts, teachers, research industry institutions and teenagers.

The Vision of Hypatia is of a European society that communicates science to youth in a gender inclusive way in order to realise
the full potential of girls and boys around Europe to follow STEM related careers.

Below is the complete list of modules that compose the Toolkit, divided into the three contexts.

Schools

- Find Gender Stereotypes in STEM Representations
- Gender Inclusiveness in your Science Teaching
- Inquire: Shape and Action
- Play Decide Game & Debate
- Science Ambassadors and Ambassadresses
- STEM Women Cooperative Card Game
- Test Yourself
- What's your Opinion?

Science Centres & Museums

- Find gender stereotypes in STEM Representations
- Science Café or Café Scientifique
- STEM Women Cooperative Card Game
- Test Yourself
- Wearable Technology
- Your Role in Research: Inquiry into Chemical Reactions

Industry & Research Institutions

- Gender optimizing software programming
- Science Ambassadors and Ambassadresses
- Skill Game
- Speed Dating
- Your Role in Research: Inquiry into Chemical Reactions

SPEED DATING

ENCOUNTERS BETWEEN PUPILS AND SCIENTISTS & ENGINEERS

AT A GLANCE

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Teenagers from 15 years old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>Meet a scientist and moderated discussion</td>
</tr>
<tr>
<td>Duration</td>
<td>About 1 hour</td>
</tr>
</tbody>
</table>

OVERVIEW

Young scientists and engineers who work in diverse STEM fields (Science, Technology, Engineering and Mathematics) in the academia and the industry, meet small groups of pupils for one time informal encounters. The participants are exposed to diverse STEM fields by female scientists from under represented fields such as computer sciences and physics, and male scientists who represent fields where male representation is inadequate or equal to female representation such as biology or chemistry. The activity will emphasize representation of various careers in STEM disciplines, including less familiar ones such as patent registration and consultancy. The activity ends with a short interactive game (Kahoot – see the explanation below), intended to expose the participants to a stereotypical approach and generate curiosity over statistics regarding STEM and gender.
OBJECTIVES

• To expose the participants to the diverse STEM subjects, especially those in which women are poorly represented.
• To expose the participants to the diverse careers in STEM subjects.
• To present female engineers and researchers as role models for the school girls (on the assumption that the public is more familiar with male engineer and researcher role models).

SUGGESTED SCENARIO

• For the industry: In the framework of open days for pupils that include visits at authentic work place of the engineer/researcher (laboratories, clean room etc.).
• For schools: In the framework of an event to encourage the choice of STEM subjects followed by presentation of the STEM subjects taught in school by the teachers.
• For museums: In the framework of an event to encourage the choice of STEM subjects at schools and STEM careers in the future.

TARGET AUDIENCE

<table>
<thead>
<tr>
<th>Age</th>
<th>Teenagers from 15 years old</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. participants</td>
<td>40 pupils</td>
</tr>
<tr>
<td>N. facilitators</td>
<td>1 facilitator and 5–6 researchers & engineers</td>
</tr>
<tr>
<td>Type of audience</td>
<td>Pupils 9th–10th grade (before selection their course of study in high school)</td>
</tr>
</tbody>
</table>

FORMAT

Meet a scientist and Moderated discussion.

TOPICS COVERED BY THE ACTIVITY

This activity has an unspecified STEM content but it deals with the issue of encouraging teenagers to choose STEM studies.

DURATION OF THE ACTIVITY

About 1 hour.

RESOURCES

MATERIALS

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gong</td>
<td>1</td>
</tr>
<tr>
<td>Stopper</td>
<td>1</td>
</tr>
<tr>
<td>An easel or something else to hang a sign with information about the researcher / engineer</td>
<td>1 for each researcher/engineer</td>
</tr>
<tr>
<td>Computer + internet connection</td>
<td>1</td>
</tr>
<tr>
<td>Projection screen or white wall</td>
<td>1</td>
</tr>
<tr>
<td>Smart phone</td>
<td>1 for each pupil</td>
</tr>
</tbody>
</table>
USEFUL LINKS, VIDEOS, ARTICLES

Before holding the activity, we recommend reading background material on the subject that includes statistical data and sources deal with the following topics: Why is it important to encourage equal opportunities? Possible reasons for the given gender inequality and proposals for improving the existing situation.

You can find data in English in the report from UNESCO: Women in Science and in the document “Criteria for Gender Inclusion at the individual, interactional, institutional, and societal/cultural levels”.

SETTING

Preparation for the activity includes recruiting several researchers and engineers. While recruiting it is important to consider the following topics:

- The researchers and the engineers will represent a broad variety of STEM subjects. Female will represent STEM areas with low female representation and male will represent STEM areas with low/equal male representation.
- The researchers and the engineers will represent a broad variety of careers that can be developed in the STEM subjects.
- We recommend choosing researchers and engineers as far as possible, with good communications abilities with people in general and with pupils in particular.
- The number of researchers and engineers is in accordance with the number of participants — an engineer/researcher for each six-seven pupils. We recommend conducting the activity with a minimum of five researchers and engineers, so that each participant will be able to meet five researchers and engineers.
- When the activity is held in school, we recommend recruiting the engineers/researchers from amongst the parents. It is important to maintain the balance between the number of men and women.

Please note!

We recommend holding two rounds of the session, i.e., for a double number of pupils. Much time is invested in the recruitment of the researchers/engineers, and it is a pity not to expose them to many school students.

- It is important to talk to or to meet the engineers and the researchers before the session with the pupils:
 - To explain to them the format in which the sessions with the pupils will be held (small groups for seven minutes).
 - To tell them what is expected of them when talking to the pupils:
 - The personal aspect — why and how they chose their occupation, was there anyone who influenced their direction of choice? Were there difficulties on the way? What were they? Etc.
 - The professional aspect — talk about their work, about the larger picture of the subject in which they work, rather than only about the small details: how does their research/work contribute to society at large and to them personally?
 - To emphasize the importance of a conversation at the level suitable to the pupils, so that they can
understand and gain an impression regarding the work. It is important to use scientific terms with which the pupils are familiar, and if necessary to explain their meaning. There is no need to go into small details. One should think of ways to simplify the subject so that it will be popular and give a feeling of understanding, even if not in depth. (It cannot be expected that a talk of a few minutes will cause them to understand the occupation/research in depth.)

- To prepare them to questions the pupils might ask at a personal level, so that they are not surprised. Pupils often ask very practical questions such as What subjects did you study in school?, Were you an outstanding student?, Are the university studies difficult?
- To send them the "Gender Equality in the Classroom" brochure, with the tips for egalitarian teaching and the guidelines on facilitation and on gender issue (see below).

DESCRIPTION AND TIME SCALE

GROUP MANAGEMENT

The pupils work in small groups at the speed dating stage and work together in the plenum at the conclusion.

INTRODUCTION

The moderator tells the participants that in the next 45 minutes they will meet females and males scientists who work in diverse STEM fields in the academia and the industry. They will have a short conversation with each scientist/engineer in small groups and will have the opportunity to ask them about their professional careers and some personal aspects such as: challenges, obstacles, successes, disappointments etc.

DEVELOPMENT OF THE ACTIVITY

Speed Dating activity, 40 minutes

- The participants are divided into groups of seven male and female pupils (we recommend maintaining a numerical balance between the genders).
- Each female researcher or engineer sits on a chair with seven chairs around her. Next to her is a sign with her name, her field of work, and the name of the company or university in which she works.
- Each group sits on the chairs opposite a different engineer/researcher.
- The progression of the game is explained: From the moment the gong is heard, each researcher/engineer talks for exactly seven minutes with the group next to her. After six minutes, the gong is struck reminding the participants that one minute remains. After seven minutes, the gong is again struck and each group moves to the adjacent station, (moving clockwise or counter clockwise).

Please note!

- Each group of pupils talks at four or five stations, according to the time allocated and the pupils’ interest.
- The operator strikes the gong and the conversation starts.
- After six minutes the operator strikes the gong and reminds the participants that one minute remains.
• After seven minutes, the operator strikes the gong to conclude the discussion.
• Each group rises and moves to the adjacent station (decide in advance if movement is clockwise or counter-clockwise).

Summary, 5 minutes
The pupils are gathered and asked:
• Did you discover something new or surprising in the activity?
• Did you encounter an area of science/technology you did not know previously?
• Did you hear something today that caused you to think differently about STEM professions and gender?

CONCLUSION
An interactive game with smartphones (the Kahoot application), 15–20 minutes
Please note!
For this part of the activity, each participant needs a smartphone and there is need for internet connection.

The closure of the event summons a trigger to expose the participants to the stereotypical perception and to generate curiosity over statistics regarding the professions of STEM and gender.

This part will be conducted by a representative from the world of industry, or the teacher, or the instructor (hereinafter the operator) dependent on the place where the activity takes place.

The pupils will be told that in this activity they will have to use their smartphones and the Kahoot application to answer a few questions about the professions of STEM and gender.

Please note!
A detailed explanation of the Kahoot application can be found on the link: getkahoot.com
• Follow this link. The game will be projected on the screen.
• The pupils are asked to connect to the "Kahoot" application (write the word Kahoot in Google and connect to the application [kahoot.it], and type in the number (pin code) appearing on the screen.
• One can see the names/nicknames of the pupils who are connected to the game on the screen.

Please note!
The first part of the game is a survey in which it is important for the voting to be anonymous and secret. It is important to tell the participants that the response is personal, and it is important for each to answer according to his/her personal feeling.

• The moment the screen shows that all the pupils are connected to the game, the START key should be pressed.
• The pupils will answer ("agree", "disagree", or "no opinion") three survey questions:
 1. Some believe that men are better than women in science and technology.
 2. Some believe that women are less rational than men and therefore less suitable to work in STEM.
3. Some believe that women may be good students but lack scientific talent.

- The results of the participants' voting can be seen after each question.
- After responding to the survey, the operator will say that now, after expressing their opinion, we will see some data from the field.

Please note!

In the next game the pupils will have to answer seven questions regarding the extent of success of females compared to males in tests in STEM, the ratio between the number of females and males studying STEM subjects in school and in the academia, the number of male workers compared to the number of female workers in R&D in STEM occupations, and so on.

This time, in contrast to the previous game, it is a competitive game. The pupils' names who answered the most questions correctly will be displayed on the screen.

- The operator will press the following link. The game will be projected on the screen.
- The pupils will connect to the game code that will appear on the screen.
- The operator will press the START key and the game will begin.
- The questions that will appear on the screen (one after the other) are:
 1. The ratio between the males' and the females' averages in national tests scores in Science and Technology is:

A small gap in favour of females; A small gap in favour of males; No difference between the scores; A big gap in favour the females.

2. What is the ratio between the number of female and male pupils in computer sciences in high school?

50% females 50% males; 68% males 32% females; 82% males 18% females; 40% males 60% females

3. The ratio between the number of female and male pupils in the academia for a PhD in engineering is:

60% males 40% females; 23% males 77% females; 50% males 50% females; 77% males 23% females

4. The proportion of women in the senior academic faculty in 2011 was:

2.7%; 35.1%; 77%; 11.2%

5. The ratio between the number of male and female workers in Hi-Tech industries in the R&D departments is:

65% males 35% females; 90% males 10% females; 50% males 50% females; 40% males 60% females

6. What is the ratio between female and male engineers in computer sciences in Africa and South America?

A small gap in favour of males; A big gap in favour of females; A small gap in favour of males; The same number of males and females.
7. Marie Curie won the Nobel Prize in: Physics; Biology; Chemistry; Physics and Chemistry

- At the end of the game it will be possible to see who won, i.e., who knew (guessed…) the data from the field on gender and science.

Please note!
The questions should be adapted to the data suitable to the country. Should the event be held in school, data can be added that relate to the school. Should it be held an industrial framework, data pertaining to the gender situation in that society can be added.

Subjects for discussion:
- Did the answers to the questions, i.e. the data from the field, surprise you? Why?
 Listen to the pupils' comments.

We have seen from the data from the field that females do as well in tests as males, i.e., the assumption is that the ability of females is similar to that of males.

- If this is the case, why do you think there is a difference in the ratio between the number of females and the number of males studying/working in STEM?
 Listen to the pupils' comments.

Say that the current situation is that women are not represented adequately in some areas of STEM, and that the main reason for this does not lie in their lack of compatibility or their ability, but in the social cultural impact. There is a different expectation of men compared to women regarding areas of study and career.

One piece of evidence for this is the existence of cultures in which the two genders are represented and succeed equally. In the western world, for example, the participation of women in computer sciences is particularly low, while in eastern cultures, Eastern Europe, South America and Africa, they are represented equally in this discipline (and sometimes the percentage of their participation is even higher than that of their male colleagues).

- So how can one alter the situation?
 Listen to the pupils' comments.

Summarize and say that it is primarily important that both the boys and the girls know the data – both regarding the females' ability and the statistical data that show that although females can do as well as males, fewer of them study and work in STEM areas. Furthermore, it is important to arrange for the boys and girls to meet women who work in these areas as role models, to refute common stereotypical thought regarding women and STEM.

It is important for women to work in STEM areas for several reasons:
- The value aspect of social equality in an advanced society.
- The importance of creating a society that encourages diversity. In solving complex problems in every sphere, including in Science and Technology, it is important to hear a broad variety of opinions and approaches from women, men, diverse sectors etc.
- The potential embodied in a particular society cannot be realized if 50% of it is not fully realized.
GENDER INCLUSION CRITERIA

INDIVIDUAL LEVEL

- The activity presents a broad range of subjects from STEM areas and a variety of careers in which one can work after studying these fields.
- All the pupils have the opportunity to express their opinion in the Kahoot game by using their own cell phone.
- Most pupils feel comfortable participating in an informal conversation with a small number of participants.
- The instructions to researchers and engineers emphasize the contribution of their research or work to society and not only the details of the research itself. Presentation of these different aspects allows a wide range of learners to be involved in the conversation.

INTERACTIONAL LEVEL

- The activity includes diverse formats of activity that facilitate diverse interactions amongst the participants: a discussion in the plenum and participation in an informal conversation in a small group.
- The activity includes a presentation of young female researchers and engineers, who serve as a role model for the female pupils. Male researchers and engineers are more familiar to the pupils, and therefore it is necessary to mainly present women. In any case, male researchers and engineers can be integrated in the activity, as long as a numerical balance between men and women is maintained.

INSTITUTIONAL LEVEL

- At the end of the activity statistical data are presented that describe the gender situation in STEM in school, in the academia and in industry. The pupils are asked to express their opinion on ways to alter the existing reality.
- During the discussion the engineers or the researchers can relate the fact whether their company/university has a gender policy or not.
- The area in which the activity is conducted is adapted to holding a large number of conversations in small groups. It is important to assure a large, spacious space that can contain several conversations simultaneously in an informal atmosphere.

SOCIETAL/CULTURAL LEVEL:

- The activity includes exposing the participants to female researchers and engineers from areas and careers in which women are inadequately represented. This exposure in fact introduces to the participants a less known aspect of STEM areas.
- During the conclusion of the activity the pupils are exposed to the importance industry allocates to increasing the number of pupils in STEM areas, who will be part of the reserve from which the employees will be recruited in the future.
- Presenting statistical data regarding gender and STEM in a manner that surprises and arouses thought.
GUIDELINES ON GENDER BALANCE

WHY IS IT IMPORTANT FOR PEOPLE OF ALL GENDERS TO STUDY AND WORK IN STEM AREAS?

In the coming years, with Europe’s knowledge economy developing and new technologies on the rise, skills in science, technology, engineering and mathematics (STEM) are becoming increasingly necessary in order to guarantee an adequate & professional workforce in a broad range of careers. It is therefore imperative to attract and recruit more youth to STEM study programs and ensure the diversity of STEM-trained professionals. The Vision of Hypatia is of a European society that communicates science to youth in a gender inclusive way in order to realize the full potential of girls and boys around Europe to follow STEM related careers.

Institutions and facilitators responsible for implementing science education activities, such as schools, museums and industries have a key role in this. They may influence the ways in which learners construct and negotiate their gender and their attitude towards STEM. This is why it is important to reflect on the gender and science biases we have, to acknowledge the stereotypes and make sure we do not perpetuate them in our interactions with the participants.

FACILITATING GENDER INCLUSION

In facilitating gender inclusive activities it is important to be aware of a few significant concepts.
GENDER AND SEX

Sex refers to biological characteristics and functions which distinguish between males and females: chromosomal sex, gonadal sex, morphological sex.

Gender refers to the social construction of men and women, of masculinity and femininity, which differs across time and space, and across cultures. It is a hierarchical and hierarchizing system of masculine and feminine norms.

GENDER STEREOTYPES AND SKILLS

A gender stereotype is our social perception regarding the attributes of males and females (character, abilities, tendencies, preferences, external appearance, types of behavior, roles, career paths etc.) and our tendency to relate such attributes to individuals of each sex, prior to meeting them (example of stereotype: male are more rational and female more emotional).

When we talk about gender stereotypes and science we refer to roles and abilities that are supposed to be “suitable” for males and for females in science (for example engineering and building are associated more with males than with females).

GENDER AND SCIENCE

STEM are fields of inquiry and knowledge. Like other forms of knowledge, they may include gendered dimensions. When the gender variable is not taken into account by researchers, this can influence the results: for example when medicines are not tested on both male and female. Furthermore, there is a persistent gender gap in the production system of scientific and technological knowledge and in many European countries women are under-represented in mathematics or informatics. Besides, women are less likely to reach a high level of responsibilities in sciences.

They are depicted as rational, intellectual and independent, and these characteristics are often associated with masculinity. This means that boys or girls who do not identify with such characteristics will think that STEM studies and occupations are “not for them” and avoid STEM completely. This is why it is important to present a complex and diverse image of science.

SUGGESTIONS FOR THE IMPLEMENTATION OF THE ACTIVITY

Defining, recognizing and implementing gender inclusive activities is complex and challenging and requires a constant auto reflexivity of the facilitator about his/her own gender stereotype and bias. Here are some practical indications and reflection questions to assist the facilitator in being inclusive.

INTERACTING WITH THE GROUP

• Neutrality in assigning tasks and roles

 How will I assign tasks? What responsibilities will I assign and to whom?

 Avoid assigning stereotypical gendered roles to participants that may contribute to the internalization of ‘female’ or ‘male’ identities, for example asking boys to build things and girls to take notes. Ensure that the different roles required by the activity are rotated between participants.
• Attribution of success and failure, overcoming stereotypical responses

Do male students who have failed link their failure to themselves or to external factors?

Do female students who have succeeded link their success to themselves or to external factors?

Set a high level of expectations for both sexes. Avoid over indulging with the girls (this leads to dependency rather than independence). Encourage both girls and boys to take risks.

• Adopt a “Wait Time” to encourage girls to speak in an environment of risk-taking boys who might respond faster than they do

How attentive was I to the students’ responses? How long did I let them speak for?

Wait 4-5 second before calling on a student to answer a question. Delaying the answer enables all the students to respond, thus giving everyone the opportunity to come up with it.

• Interaction with the sexes to overcome the tendency to engage with male students more than with females:

Did I direct questions to boys more than to girls?

Be aware whether the questions are directed more to boys or to girls.

• Unaware expression of stereotypes

Did I pay attention to the students’ behaviour in relation to their expression of gender stereotypes?

Teenagers often reproduce gender stereotypes unconsciously or in a subtle way. This might be taken as the chance to underline it and use it as a point of reflection.

DURING A DISCUSSION

• Are boys more interested in building things and girls in decorating the things produced? Can you switch these roles in the activities?

Challenge learners to depart from their preferred interests and widen their engagement in science (many children have gender stereotypic interests that might be challenged).

• Do you think it could be useful to introduce and discuss the concept of gender or stereotype before or after the activity?

Consider if a forgoing explanation of the main concepts about gender and about the terminology/concept connected could enrich the discussion.

• While facilitating a discussion

Acknowledge that different learners have different kinds of prior knowledge that may be relevant in different ways. Discussion can take its point of departure in what learners already know about the subject matter.
MEETING A STEM PROFESSIONAL

Role models are effective in stimulating girls’ and boys’ interest in STEM. Many activities have STEM professionals as protagonist or give examples of STEM professionals. It is important that these role models do not reinforce gender stereotypes.

- How many men and how many women appear in the example of STEM professionals I give in the activity? Are they stereotypical?

Keep a balance between the number of females and males as speakers or examples. Where possible ask them to talk not just about the scientific content but also about their personal life.

Ensure that the involved science educators and scientists reflect a broad variety of personalities. Girls and boys are most inspired by role models they feel psychologically similar to themselves (as regards to origin, culture, age, etc.). Otherwise, the standards set by the other person can be seen as contrasting, and girls and boys may react against them.

- In the activities, do I present the variety of STEM – from computer games to engineering?

While choosing STEM professionals and examples involved in the activity, ensure that the diversity of science is represented to the largest extent possible.

FACILITATING AN EXPERIMENTAL SITUATION

While dealing with a specific scientific content participants might not see clearly how this is related with gender balance in STEM. Hypatia activities aim to propose unexpected ways to approach science and scientific content (like chemistry, robotics or making), breaking the stereotypical perception of STEM. This serves to introduce and disseminate a different view of the world of science, unveiling different aspects with which more people – girls and boys – can identify. You can emphasize this aspect while facilitating an activity focused on scientific content rather than on gender.

- For example, an activity framing technology such as the one on wearable technologies could attract more girls than one on transport or missiles.

- Many girls feel more comfortable in a situation based on cooperation, and others even avoid competitive activities. The facilitator could present a challenge with a “story” behind and not just as a competition, or pay attention in balancing competition and cooperation in the same activity.

- Many studies show that girls learn better in an environment that is esthetically pleasing. This is why it is important to create a pleasant and esthetic environment for the activities.
USEFUL LINKS ABOUT GENDER INCLUSION IN THE CLASSROOM

HYPATIA’S THEORETICAL FRAMEWORK

The present document proposes a framework to address gender inclusion in STEM activities. It gives rise to a set of criteria for the analysis of the gender inclusiveness of existing STEM education activities, or for the design of new, gender-inclusive activities.

Theoretical Framework

GENDER EQUALITY IN THE CLASSROOM

We are frequently unaware of the manner in which we relate to boys and girls. School classrooms are no exceptions. Here is a list of points of attention and suggestions aimed at improving the degree of equality in the class in order to encourage girls and boys to pursue the fields of STEM.

Gender Equality in the Classroom

GUIDELINES ON FACILITATION

A BIT OF ADVICE FOR GOOD FACILITATION

A key element for good facilitation is the active involvement of the participants every time a concept or content is presented. Involvement means for example:

- Considering participants’ personal experience as a starting point of the engagement.
- Building on their own point of view or prior knowledge.
- Embedding continuously the contributions of the participants in the process.

Facilitation is not easy; it takes practice, time and reflection! In order to transfer these concepts into practical situations — and thus to foster engagement, interaction and discussion — you can find a brief list of suggestions below. They can be helpful in developing good facilitation.

INTERACTING WITH THE GROUP

- Prepare the environment where the activity will take place in advance, organize the space according to the needs of the activity, even changing its usual structure if needed (i.e. you can move tables and chairs around).
- Make sure that all participants can see and hear well.
- Keep eye contact with the participants.
- Address participants as peers rather than as passive spectators or ignorant individuals.
- Listen to people and use their own terms.
- Use questions as much as possible — they can be a useful tool to encourage interaction among the group.
- Stimulate reflections among participants.
• If possible, ask and build on information or elements that can be discovered through direct observation.
• Engage people by linking to their personal experience.
• Encourage participants to express their opinion and elaborate their own considerations.
• During an activity, you might want to organise different group settings – work in smaller groups or in pairs, create plenary moments – to help engagement and better interaction with the experience.
• Before interacting with the participants in plenary, you might want to ask participants to discuss in small groups as a “warm up”. This helps involving the shiest people or helps everybody to feel more comfortable about the topic before sharing any consideration in plenary.
• When the discussion is set in small groups, move around the groups checking on work and discussion, and intervene – only in case of difficulties!
• In plenary, try to address everyone as much as possible, encouraging everybody to participate and engage.

FACILITATING AN EXPERIMENTAL SITUATION
• Try to make the activity as participatory as possible: every participant should have the possibility to engage directly with the experiment; avoid demonstrations.
• Do not reveal the results of the experience before the participants’ own discoveries and considerations.
• Encourage participants to make initial hypotheses/descriptions/comments about what they think would happen.
• Keep the experiment at the centre of attention and of the discussion.

• Engage learners through an alternation of manual activity, questions and discussion.

DURING A DISCUSSION
• Engage learners through a balance of open-ended questions, closed questions, discussion and exchange of opinions, etc.
• You might want to use provocative dilemmas as tools for debate. Disagreements can be valuable for analysing notions and negotiating views, use them constructively.
• Stimulate and build not only on participants’ already-acquired knowledge but also on emotions and imagination.
• Challenge the participants at a suitable level.
• Avoid:
 o A didactic approach and the assessment of participants’ knowledge.
 o Monologue.
 o Specialized terms with no reference to real objects.
 o Seeking and dealing only with the correct answers or, even worse, with the correct questions.
 o Not listening.

HOSTING A STEM PROFESSIONAL
• You might suggest to the speaker to alternate between questions and speech allowing participants to take up a more active role and prevent long talks.
• Before introducing a STEM professional, you can ask participants to share their perception about the particular profession, and then discuss it with the speaker.
Young participants, when they have the possibility to ask free questions, often seem to be interested in the speaker’s daily personal lives, in their career path and about what they were like when they were students. You can suggest that speakers use these topics as “hooks” during speeches and conversations.

It helps if speakers bring tools or objects from their daily work with them as examples from their daily practice.

QUESTIONS: A FUNDAMENTAL TOOL FOR LEARNING

Building a relationship with an object is like ‘getting to know a new person’. Indeed, this kind of comparison can help understand a possible way of developing questions to be used in learning experiences. In the process of getting to know a person or starting a conversation we move from the basic and concrete to the abstract and more complex. Using questions in a learning situation involves similar steps: starting from basic information (usually elements that could be discovered through observation) working at levels where there is compatibility (i.e. levels where the pupils can become involved and engage through their knowledge, experiences and views), in order to proceed to the discovery of more complex information and concepts. Such an approach invites learners to search within their own repertoire of knowledge and experience for the necessary elements that would help them discover new insights, while at the same time it can operate as the foundation for the development of questions by the learners themselves.

In fact, we are not arguing here for a linear process of ‘facilitator-asks – learners-answer’; rather, we argue for a two-way-contribution process, in which both facilitator and learners are in the position to ask and answer questions. In this sense, questions are the stimulus for initiating dialogue, the tool and not the objective. They help new knowledge to be elicited and information to be added within a free flow of ideas, leading to the broadening of understanding.

What are the types of questions that would operate as the method for eliciting information and interpretation, for initiating constructive dialogue, for developing skills and self-confidence in learners – and facilitators themselves?

First of all the basic categories:

- Closed questions – the ones that have only one correct answer.
- Open questions – those that accept more than one correct answer.

Closed questions are usually used when we seek specific information about the phenomenon/topic/exhibit/object etc. and can be further divided to:

- Questions for examination: Answering those questions requires careful examination. The answers offer the first information on the basis of which we construct more detailed knowledge.
- Questions for explanation: The answers offer an explanation – how something works, how it was created, etc. and are closely related to the information derived from the examination questions.
- Questions for comparison: These stimulate comparisons with other situations of the same type, materials, dimensions, etc. and encourage the identification of similarities, differences and connections with the learners’ personal knowledge and experience.
On the other hand, open questions encourage the expression of personal views, the employment of pre-existing knowledge of the learners, and the search for personal meanings. Discussion and open-ended questions offer learners the opportunity to pool ideas and share insights in the group followed by opportunities to develop understandings further through deploying and defending insights and opinions.

Open questions can be divided into the following categories:

- Questions for problem-solving: Those demand the use of critical thinking, imaginative thinking, hypothesis and analysis skills and ability for using knowledge for problem solving.
- Questions for prediction: The answers to those questions offer predictions in instances of changes of parameters.
- Judgement questions: Answers to those can be very personal and unique. They demand choices, evaluation of a situation, justification, etc.

You should be seeking a balance between closed and open questions. Asking only closed questions might create a feeling of ignorance among those learners who find it difficult to answer them, since they require relatively minor use of skills and more of specialised knowledge. Closed questions should be used for exploring the object and the new knowledge around it, and, in addition, offer the basis on which to ask the open questions. For any learner, answering open questions implies using their personal context to find the new information. It also enables them to use their own personal experiences, emotion, imagination and skills for meaning-making and personal interpretations.

In the philosophy of an interactive, constructivist approach to learning, the asking-answering of questions means not only the acceptance of more than one correct answer (through open questions), but also ‘allowing learners to get things wrong’, that is, not allowing a learning situation to be limited by seeking only ‘correct’ answers, or by the expectation of pre-determined outcomes. It is important that the facilitator does not jump in too quickly to correct learners, but rather uses the conflicts that arise between their different perspectives helping them to see that there are standards and that their own interpretations are not necessarily the same or as good as those held by other learners. Learning results from reference to, and drawing from, learners’ own understanding of situations, and opportunities for exploration through trial and error.
Hypatia is an EU Horizon 2020 funded project that addresses the challenge of gathering different societal actors around bringing more teenagers, especially girls, into STEM careers both in school and as a choice of learning and career in the future. It aims at changing the ways sciences are communicated to young people in and out of school to make them more gender inclusive.

This project has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation (H2020-GERI-2014-1) under the grant agreement No. 665566.